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(R)-(+)-Lunacridine 1 has been synthesised in 97.3% e.e. using a chiron approach through L-valine and D-mannitol as the
starting compounds in order to corroborate its absolute configuration.

The prenylated quinolinone alkaloids lunacridine and luna-
crine have been isolated from Lunasia sp.1 of different
sources in optically active form and given structures 1 and 2
respectively on the basis of degradative studies, spectroscopic
data2 and a synthesis of the racemates (in extremely poor
yield.3 An attempt was also made by Grundon and co-
workers4 to assign absolute configurations to the title com-
pounds through asymmetric synthesis in less than 1% e.e.
The configurational assignments to compounds 1 and 2 were
based on the assumption that (S)-peroxycamphoric acid on
reaction with an olefin yields an (S)-epoxide and by compari-
son of the direction of specific rotation of their compound 1
with that reported for the natural product. In view of very low
optical induction and magnitude of the specific rotation,
[a]D

25 = µ0.19 for 1, any assignment of absolute configuration
to 1 and 2 needs further support to be unequivocal. Recently
Barr et al.5 have used a cumbersome resolution procedure to
prepare the title compounds in poor overall yield. Therefore,
the present studies were planned in order to accomplish an
unambiguous and highly enantioselective synthesis of 1 and 2
so as to assign absolute configurations to these compounds
on firm grounds. The strategy used for the present asym-
metric synthesis is based on a chiron approach wherein optic-
ally pure (S)-(+)-valine and (D)-(+)-mannitol were used as
the starting compounds. The synthetic investigations carried
out are delineated below.

Synthesis of (S)-Epoxide 11.—(i)(S)-Valine as starting com-
pound (Scheme 1).

(ii) D-Mannitol as starting compound (Scheme 2).

Transformation of 11 into Compounds 1 and 2.·First
approach (Scheme 3).

*To receive any correspondence.

Scheme 1 Reagents and conditions: i, HNO2, 0 °C; ii,
Amberlyst-15–MeOH; iii, DHP-H+; iv, LiAlH4; v, TosCl-py; vi,
MeOH–H+; vii, NaOMe

Scheme 2 Reagents and conditions: i, NaIO4–aq. MeCN; ii,
MeMgI; iii, TosCl–py; iv, LiCuMe2; v, MeOH–H+

Scheme 3 Reagents and conditions: i, BuLi at µ78 °C; ii, 11; iii,
anhyd. HCl–OEt2; iv, CH2N2; v, TosCl–py; vi, aq. NaOH
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Second approach (Scheme 4). The synthetic material had [a]D
30 = +28.47° (c, 1.5 in

EtOH). Its mp and IR, UV and 1H NMR data were identical
with those reported for the natural product. Optical purity
was also checked by derivatization of 1 with Mosher’s reagent
followed by 1H NMR analysis of the resulting compounds.
The transformation 1h2 has already been reported.1
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